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Abstract
The relation between entanglement entropy and the computational difficulty of
classically simulating quantum mechanics is briefly reviewed. Matrix product
states are proven to provide an efficient representation of one-dimensional
quantum systems. Further applications of the techniques based on matrix
product states, some of their spin-off and their recent generalizations to scale
invariant theories and higher dimension systems are also discussed.

PACS numbers: 03.65.Ud, 03.70.+k, 75.10.Pq

1. Entanglement entropy as a measure of quantum correlations

A common misconception states that, in general, large quantum-mechanical systems cannot
be efficiently described by classical means. This prejudice can be illustrated with the simple
example of a system composed of n two-level systems or qubits. The Hilbert space of this
system corresponds to the direct product C2⊗n and an arbitrary state can be expressed in the
natural (also called computational) basis

|ψ〉 =
∑

i1,i2,...,in=0,1

ci1i2,...,in |i1, i2, . . . , in〉. (1)

In order to fully specify an arbitrary state, it seems necessary to provide all the ci1···in
coefficients, that is, 2n complex numbers (minus a global phase and a normalization constraint
that we can ignore for the counting of the scaling of needed resources). As n grows, the
classical representation of a quantum state requires exponential resources. Furthermore, the
processing of the state, e.g. the computation of its time evolution, and the computation of
observables also requires exponentially many operations.

The exponential effort needed to deal with quantum mechanics can also be advocated
using an argument based on entropy. The precise statement says that an average random state
in the Hilbert space is known to carry maximal von Neumann entropy. Let us describe in more
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detail this point. Consider a partition of the original state into two parties, A and B. If party A

ignores party B, the description of its subsystem is based on the reduced density matrix

ρA = trB |ψ〉〈ψ |. (2)

The description that party A is making of the system ignores quantum correlations between A

and B. If A were to suddenly discover that it was correlated to B a surprise would occur. The
amount of that surprise is quantified by the von Neumann entropy

S(ρA) = −tr(ρA log ρA). (3)

It is well known that the entropy attached to party A ignoring party B equals the reciprocal
one, that is, the entropy attached to party B when ignoring party A. This is a consequence of
the Schmidt decomposition

|ψ〉 =
χ=min(dim HA,dim HB)∑

a=1

λa|ξa〉A|ϕa〉B (4)

with real λa � 0,
∑

a λ2
a = 1, and |ξa〉A and |ϕa〉B being new orthonormal basis for parties A

and B. The magic of this decomposition is that it provides a basis such that any state is written
with a minimum number of coefficients χ , called the Schmidt number, and the corresponding
changes |ξa〉 = �i

a|i〉A and |ϕa〉 = �
′j
a |j 〉B to the computational basis. A prominent example

is the economical description of a product state since χ = 1 and only the changes of basis are
to be retained. By the same token, the Schmidt number χ can be understood as a measure of
entanglement. A more sophisticated measure of entanglement is the von Neumann entropy
which reads

S(ρA) = S(ρB) = −
χ∑

a=1

λa log λa. (5)

We can now come back to the alleged misconception on the exponential difficulty to deal
with any quantum system. The argument says that the totally random state made with n spins,
n = nA + nB , is such that all the eigenvalues in the reduced density matrix ρA are identical
and equal to 2−nA . Thus, S(ρA) = nA, which is the maximum possible scaling of the entropy
for that subsystem. Thus, the entanglement entropy scales with the volume of the subsystem
which corresponds to maximal entropy and quantum correlations pervade the system.

2. Refutation of the need for exponential resources

The argument stating that the representation of any n-body quantum system needs exponential
(in n) resources does not apply as a general rule. The reason that invalidates the general
argument is a combination of two facts:

• It is not necessary to represent a given state in the original computational basis. This
should come as no surprise since we are used to compressing information. Consider a
piece of literature. To keep all the information about the text, it is not necessary to write
all its characters. We can define a clever conversion table and use shorter characters
for frequent words. This procedure can be made close to optimal for arbitrary and long
sequences using entropic compression codes (as the Lempel–Ziv based gzip [1]). We
shall later argue that we already have techniques to represent and manipulate quantum
systems which are far better than the naive computational basis. In this sense, we do
know compression methods for quantum mechanics.



Entanglement entropy and the simulation of quantum mechanics 6691

• In general, typical physical states are not random. Local Hamiltonians produce
interactions between neighbouring particles. The quantum correlations that pervade
the system are far less than the maximum possible. In other words, typical physical states
do not carry maximal entropy.

In recent years, some intense research has addressed the problem of finding an optimal
classical representation for relevant quantum systems. Depending on the problem, three main
ideas are currently pursued. Whenever possible, exact simulations are carried out. In practice,
this is possible only for systems of few particles as shown by the work done on cold gases of
few particles. A second avenue of work are Monte Carlo simulations. This is, for instance, the
standard technique to investigate quantum field theories regularized on a lattice. The method
allows for computations of correlators but it is not appropriate for the detailed simulation of
time evolution of quantum systems, neither to get a good grasp on specific wavefunctions
as e.g. the ground state. Furthermore, the lattice approach faces the so-called sign problem.
A third idea to represent quantum systems looks for a specific basis where correlations are
well-represented, which we shall now address.

3. Matrix product sates

Let us consider a n-particle quantum product state

ψ = |ξ1〉 ⊗ · · · ⊗ |ξn〉 = (α1|0〉 + β1|0〉) ⊗ · · · ⊗ (αn|0〉 + βn|0〉) (6)

where αi can be chosen real and |αi |2 + |βi |2 = 1. Note that this state is represented with 2n

real numbers, far less than the naive exponential counting of 2n complex numbers. The reason
for this saving can be traced to the fact that all bi-partitions of the system carry zero entropy.
There is no surprise in adding uncorrelated new particles to any subsystem.

Can this idea be pushed further? Indeed, it is possible to find an economical basis to
retain all the correlations in the system. The idea works in an iterative way. We first take the
Schmidt decomposition between the first qubit and the rest of the system. Only the change of
basis for the first qubit |α1〉1 = �[1]i1

α1
|i1〉1 and the χ1 eigenvalues of this decomposition will

be retained. We then proceed to find the Schmidt decomposition between the first two qubits
and the rest of the system. Again, we retain χ2 eigenvalues of the decomposition and find out
the change of basis between the basis found in the first decomposition and this second one
for the second qubit that amounts to a tensor |α1〉2 = �[2]i2

α1α2
|α2〉2. The procedure is iterated,

giving the result [2]

|ψ〉 =
χ1∑

α1=1

. . .

χn−1∑

αn−1=1

�[1]i1
α1

λ[1]
α1

�[2]i2
α1α2

λ[2]
α2

. . . λ[n−1]
αn−1

�[n]in
αn−1

|i1, i2, . . . , in〉. (7)

This construction represents the original coefficients ci1,...,in as a product of matrices,
hence the name matrix product state (MPS) [3, 4]. It is an exact representation that is
able to adapt to the specific entanglement content of a state. To see this, note that a product
state corresponds to a state with χ1 = · · · = χn−1 = 1, that is, any Schmidt decomposition is
made with a single term. The more entangled a state the larger the matrices �. It is possible
to actually find the maximum size of any bi-partition. Let us take a party A made of l qubits
versus n − l. Then the size of the HA Hilbert space is 2l . Thus, χl � 2l . An arbitrary state
will carry maximum entropy and each matrix will reach its maximum possible size. Yet, in
most relevant cases, the size of the matrices will be smaller than their maximum.
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We may furthermore absorb the eigenvalues λ into the matrices �’s. We may also decide
to extend the original MPS representation and take an extra periodic index and set all the
matrices of equal size χ . We then have a periodic boundary representation of the state

|ψ〉 =
∑

i1i2,...,in=0,1

tr(A[1]i1A[2]i2 . . . A[n]in )|i1, i2, . . . , in〉. (8)

This expression shows the depth of the idea of matrix product states. All coefficients ci1i2...in

are representation as a clever multiplication of matrices. An exact representation will need a
different size for the matrices depending on the entanglement present in the state. A simple
counting shows that the original 2n coefficients are now represented with 2nχ2 elements.
It is clear that an absolute random state will need χ ∼ 2

n
2 . In general, though, physical

states carry less entropy and the MPS representation becomes a powerful tool to represent
them.

Let us pause for a moment and give a very simple example that illustrates the idea
underlying the compression power of matrix product states. Let us try to communicate a
friend the set of numbers 6, 10, 15, 22, 33, 42, 63, 55, 105 and 231. Instead of sending those
ten numbers we can as well transmit the instruction of taking all the pair multiplications of 2,
3, 5, 11 and 21. This packing is exponentially economical if we consider multiplications of n
numbers. MPS is a sophistication of this multiplicative saving that also handles superpositions,
that is entanglement. It is clever compression of entanglement perfectly suited for states which
are close to product states.

Let us go one step beyond and see that the size of the matrices involved in the MPS
construction is directly related to how much entanglement that state carries. Any partition of
the system, say at site a, can be viewed as a Schmidt decomposition

ψ =
χa∑

β=1

λ
[a]
β

(
M

i1...ia
L,β

∣∣i1 . . . ia
〉)(

M
ia+1...in
R,β

∣∣ia+1 . . . in
〉)

(9)

where ML,R stand for the product of matrices on the left and on the right of the index a. As a
consequence, the entropy for both the left and right parties is

S(a) = tra+1,...,n|ψ〉〈ψ | =
χa∑

β=1

λ
[a]
β log λ

[a]
β . (10)

The maximum entropy that such a state can carry corresponds to the case where all λ[a]
β = 1/χa .

Then,

S(a) � log χa. (11)

This result shows that some amount of quantum correlations can be described with modest
values of χ ’s. It also shows that random states need exponential χ ’s.

It is also worth noting that an MPS with periodic boundary conditions will always have
two indices connecting left and right. One index works as above and a second one wraps
around the periodic boundary. The argument gets modified in the sense that S(a) = 2 log χa

for periodic MPS, that is, periodic MPS uses matrices with half the dimension of the ones
needed with open boundary conditions.

A final and relevant remark must be emphasized. The typical distributions of the
eigenvalues of the reduced density matrix in physical systems are not flat. In some cases,
the distribution decays exponentially. This suggests that a truncation in χ may provide a
sensible approximation to the system.
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4. Entropy and matrix product states for spin chains

We have seen that a certain amount of quantum correlations can be described faithfully with
the MPS construction. It remains now to know what is the amount of entanglement present in
the ground state of a typical quantum system.

This question can be fully answered for quantum spin chains. It is possible to compute
[5–7] the entropy carried by the reduced density matrix of l (out of n → ∞) spins for the
ground state of a critical system

Sl = c

3
log l, (12)

where c is the central charge of the conformal field theory that describes the universality class
of the phase transition. This amount of entanglement is far lower than the entropy carried by
a random state (which would be Sl ∼ l). We can now match this result from our previous
MPS argument to show that the properties of this l-spin block are faithfully reproduced by a
periodic MPS state with size

χ = l
c
6 . (13)

As l grows, only a polynomial increase of computational effort is needed. Thus, quantum phase
transitions on spin chains can be efficiently simulated. Indeed, the technique of density matrix
renormalization group (DMRG) [8] has been widely applied to one-dimensional systems with
hundreds of spins. This would definitely be impossible if the entropy would have grown
as a power of l rather than a log l. Yet, even the moderate need of classical resources we
have established is commonly considered as a poor representation of critical systems. As we
shall shortly see, only non-critical theories can be described with a precision that improves
exponentially with χ .

Let us note that the entropy contained in the ground state of a spin chain corresponds
to an area law [9, 10]. In higher dimensions, Hamiltonians made with local interactions are
expected to deliver ground states with Sl ∼ l

d−1
d , where d stands for the number of spacial

dimensions. For d = 1 the power law is substituted with a log. The area law growth of entropy
must be seen as the quantitative barrier that prevents faithful simulation of higher dimensional
quantum systems. Any new technique to handle quantum systems should aim at this problem.

As we just mentioned, it is also possible to compute the entropy content of spin chains
away from the quantum phase transition point. There, the entropy saturates to a maximum
value dictated by the parameters of the model [6]. An MPS approximation can then be
exponentially precise. A large literature on the technique of the above-mentioned DMRG
(which is a method to find MPS approximations to ground states of Hamiltonians) shows the
power of the entropy calculation.

Further developments on the relation between entropy and renormalization group hint
at a decrease of entanglement along renormalization group flows [10, 11]. Moreover,
renormalization group transformations can be operated on states and, more specifically, on
matrix product states [12]. It would be very nice to obtain further results along these lines for
higher dimensional theories.

5. New applications on matrix product sates: continuous variables, Laughlin state,
quantum computation

MPS can be used to approximate any computation of a ground state. For instance, it is possible
to consider discretizations of quantum field theories and work out the ground state. In [15] it is
shown how to deal with a discretized free bosonic theory, that is a set of harmonic oscillators
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to get e.g. the entropy present in the ground state or the eigenvalues of the reduced density
matrix. The basic idea is to approximate the ground state of the system with local degrees of
freedom at positions x1, . . . , xn with

ψ(x1, . . . , xn) = tr(A[1]a1 . . . A[n]an)Ha1(x1) . . . Han
(xn) (14)

where Ha(x) provides a basis for the local continuous Hilbert space (e.g. Hermite polynomials
times Gaussians). Entanglement between the basis elements is taken into account by the MPS
construction. Furthermore, the MPS method can be extended to an infinite system accepting
that all the matrices A are identical. Then the algorithm to compute the ground state can be
made to respect translational invariance [15, 16]. This variant produces MPS that right away
describe the thermodynamical limit of the system. Further work along these lines is needed
to assess the power of this method.

It is also possible to approach other highly entangled systems and represent their ground
state as an MPS. Let us consider the Laughlin wavefunction [13]

ψ = Am

∏
(zi − zj )

m exp −1

2

∑

i

|zi |2, (15)

where ν = 1/m is the filling fraction in the system. It is extremely hard to simulate this
wavefunction, as shown by the fact that its normalization Am is unknown in general. If
we could find an MPS realization of this wavefunction, we could have a better chance to
carry exact computations. Let us see that for m = 1 this is indeed possible. Then, the
wavefunction corresponds to a fermionic system described by a Vandermonde determinant.
The wavefunction can be rewritten as

ψ = A′
n−1∑

a1,...,an=0

εa1...anφa1(z1) . . . φan
(zn), (16)

where ε is the Levi-Civita fully antisymmetric tensor and φa(z) = 1√
πa!

za exp − 1
2 |z|2 forms a

monoparticular basis. The way to rewrite the coefficients as a product of matrices is simple
since this is precisely a property of the Clifford algebra [14]

εa1...an = tr(γ a1 . . . γ anγ5), {γ a, γ b} = 2δab a, b = 0, . . . , n − 1 (17)

where γ5 ≡ (−i)n/2γ 0 . . . γ n−1 (here, we just consider even dimensions). Note that the
original wavefunction for m = 1 would carry an apparent number of degrees of freedom nn

because there are n particles that may occupy n states. An exact computation of the entropy
for half of the system shows that S(n/2) = log

(
n

n/2

) ∼ n. The periodic MPS state uses

matrices whose dimension dim γ a = 2[n/2] exactly matches the entropy, log χ2 = n in the
limit n → ∞. Hence, the MPS construction is optimal. The cases with larger m can be
constructed by using a direct product construction of γ matrices. That construction is not
optimal since the entropy for an arbitrary m Laughlin wavefunction is known to be bounded
by n log m whereas the direct product construction needs O(nm) elements.

Let us also mention that some work has pushed the application of MPS to entirely new
settings. It is possible, for instance, to simulate the whole evolution of a quantum algorithm
using MPS techniques [17]. The initial state is represented as a MPS and then a series of non-
local quantum gates are applied as an adiabatic evolution driven by a problem Hamiltonian.
It has been possible to solve some NP-complete problem with up to 100 qubits. The one
solution, out of 2100 possibilities, of a hard problem has been deterministically obtained using
an MPS simulation of a quantum algorithm.



Entanglement entropy and the simulation of quantum mechanics 6695

6. Spin-off: image compression, differential equations

It is tantalizing to try to develop some spin-off applications of MPS beyond quantum
mechanics. Two ideas have already been worked out.

The first one consists of using MPS truncation techniques to compress an image [18]. Let
us start by mapping an image into a quantum pure (real) state. Take a telescopic addressing
of pixels in quadrants organized as follows. A pixel lying in the first quadrant carries a label
|1〉 (or |2〉, |3〉 or |4〉 for the other options). Each quadrant is subdivided again into fourths.
The new labelling for a pixel in quadrant 1, sub quadrant 2, is |12〉. We can proceed up to n
levels, so that the image is made by 4n pixels. Each pixel carries a grey level that we use as its
coefficient. Then

4n pixel image → |ψ〉 =
4∑

i1...in=1

ci1...in |i1 . . . , in〉 (18)

represents a 4n-pixel grey image where the basis spans over all pixels and the coefficient of
each basis element gives the grey level of the corresponding pixel. It is trivial to turn these
coefficients into an MPS. A truncation of the size χ of the matrices in the MPS is tantamount
to a compression of the picture. Results are remarkably competitive.

A second idea to use MPS outside the domain of quantum mechanics is to solve partial
differential equations [15]. A partial differential equation with n variables can be viewed as an
operator acting on the variables and coupling them. This is just another form of entanglement.
We can take the operator in the differential equation and turn it into a continuous variable
problem that can be addressed using the continuous variable techniques presented in the
previous section. A minimum distance principle emerges as the error in the solution of the
equation. Again, the results obtained are surprisingly good and deserve further attention.

7. Beyond MPS: MERA and PEPs

The shortcoming of MPS is the limited amount of entanglement they can support. Let us take
the ground state of a Hamiltonian with local interactions defined on a quantum network in
two dimensions. We expect that any geometrical partition of this state will carry an area law
entanglement, that is, the entropy will grow linearly as the number of degrees of freedom that
define the boundary of the chosen partition. Therefore, there is no good representation of the
ground state in terms of MPS as χ should grow exponentially. This is the reason why there
are no faithful simulations of higher dimensional quantum systems. In other words, we need
a new technique that beats the area law scaling of entanglement.

Two ideas have been launched in recent years to overcome MPS shortcomings. The
first one carries the name of multiscale entanglement renormalization ansatz (MERA) [19]
and proposes a new way to organize the book-keeping of entanglement using renormalization
group ideas to improve on MPS. MERA are built so as to represent quantum systems at a
critical point. They combine the block-spin idea with a set of disentangling operations that
optimize the way entanglement is retained and manipulated.

A second idea is directly constructed to deal with higher dimensional systems. It extends
the matrix product idea to a tensor contraction. This new tensor representation carries the name
of projected entangled pairs (PEPs) [20]. PEPs are proven to support area law entanglement.
It is also known that the physical construction of PEPs is equivalent to solving NP-complete
problems. An algorithm to find the PEPs that describe the ground state of a quantum network
is already available.
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The conclusion of recent research remains open. We still do not know what is the optimal
way to represent quantum systems. Entropy computations are no longer academic results
since they establish the amount of entanglement to be represented. MPS are proven efficient
on one-dimensional systems. A lot of work is still needed on critical systems and higher
dimensions to have fully satisfactory answers to delimit the classical resources necessary to
faithfully represent and manipulate quantum-mechanical states.
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